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Experimental and numerical investigations are performed for the situation of steady 
recirculating combined-convection water flows in a cylindrical duct, The ex- 
perimental results are presented as photographs from which information regarding 
the stream-function and temperature distributions within thewater can be deduced. 
The experimental flows, which have ,J$eymlds number in the range 15 < Re < 31, are 
modelled numerically using an elliptic finite-difference formulation and a multigrid 
solution technique. The results for stream function and temperature are compared 
with the experimental results and agreement is found to be generally very good. 
Plots of flow average temperature, local Nusselt number, average Nusselt number 
and friction factor times Reynolds number are also presented for each flow situation 
considered. 

1. Introduction 
The problem of obtaining both numerical and experimental flow patterns for 

axisymmetric, steady, laminar, recirculating flows in vertical pipes subject to 
heating and/or cooling of wall sections has been considered recently by Morton et al. 
(1987). These flows are of great interest because of their general relevance to the 
modelling of heat exchangers in industry and the cooling processes in nuclear 
reactors, to take two applications, but equally for the insight they offer into flows 
under competing distributions of internal force. Although the pressure differences 
between pipe ends may seem large, interior pressure gradients are small and can 
readily be matched by buoyancy forces, producing in some parts of the flow forward 
acceleration and in others reversed acceleration. These are problems of mixed 
convection, combining aspects of forced convection in response to the externally 
imposed pressure gradients, typically characterized by a Reynolds number, with free 
convection responding to the buoyancy forces arising from the temperature 
distributions, characterized by a Grashof (or equally a Rayleigh) number. Moreover 
the inter-relationship of the velocity and temperature fields depends on the Prandtl 
number. With these three parameters in addition to any geometric ratios a rich 
variety of flows and temperature states may be achieved. Some years ago, one of the 
present authors gave a very simple asymptotic solution for flow up a uniformly 
heated vertical pipe (Morton 1960), demonstrating a balance of pressure gradient, 
buoyancy and viscous forces that could drive steady axial downflow surrounded by 
an annulus of upflow. The possibility of axial stagnation was clear a t  the time, but 
it has taken major improvements in computing and numerical capabilities to treat 
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realistic problems involving entry length flows and the response of flows to various 
changes in heating and cooling of the pipe wall. 

A preliminary discussion of some cases of interior flow stagnation and flow reversal 
has already been presented, and in this paper the numerical and experimental 
investigations are studied in greater detail over a wider range of parameters. The 
experimental aspects are substantially improved over the earlier work, both to cover 
a more representative set of interior flows, and in the use of temperature-sensitive 
liquid crystal capsules which provide reasonable detail on the temperature fields 
within the flow. 

Another aim of the paper is to introduce multigrid techniques in order to 
accelerate the numerical solution of the finite-difference problem considered. 
Multigrid methods are a relatively recent area of research and have only been 
brought into real prominence since the publication of the major piece of work on the 
subject by Brandt (1977). Since then an increasing amount of work has been carried 
out on the subject, with particular attention being given to ‘lid-driven cavity’ flows 
in the papers of Ghia, Ghia & Shin (1982), Phillips & Schmidt (1985), Fuchs (1986) 
and Gaskell, Lau & Wright (1988). In this paper the basic multigrid concepts are 
considered and a method of application similar to those used by Falle & Wilson 
(1988) and Gaskell et al. (1988) is used to solve the problem under consideration. 
Significant improvement in the computation time required for the convergence of the 
solution of the finite-difference equations on the finest mesh is achieved. As a 
consequence a much finer mesh is used than in the previously reported calculations 
of Morton et al., thus enabling more accurate solutions to be presented. A comparison 
between the results obtained in the numerical and experimental investigations 
reveals very good correspondence, and an examination of the numerical solutions 
reveals new information with regard to the flow structure and heat transfer of the 
experimental situations. 

The intention in this paper is to provide a widely representative set of interior 
flows using improved computing techniques that will handle the temperature 
singularities a t  the walls and improved experimerltal techniques that will give a 
sufficient approximation to the temperature fields. In this way wider attention can 
be drawn to this interesting set of interior flows. 

2. Experimental set-up 
The experimental apparatus, which is illustrated schematically in figure 1, consists 

of a length of thin-walled vertical Perspex tube (A), encased by a two-section water 
bath. The water bath consists of independent sections, (B) and (C), each with thin 
end plates drilled precisely to give a direct seal against the experimental tube (A), 
thus minimizing the thermal impedance between bath water and experimental fluid. 
In operation the baths (B) and (C) are separated by a small air (or other insulating 
material) gap and water at the required temperature is circulated at rates very much 
greater than the rate a t  which water passes through the vertical tube (A). This 
ensures that the bath sections of the tube (A) will respond closely to both 
temperatures when steady flow is achieved, except for short lengths of order the pipe 
wall thickness a t  the ends of the baths. In  view of the difficulty in determining precise 
temperature fields from the liquid crystal display, it was felt that  this was sufficient 
and measurements of the inner wall temperatures were not attempted as the 
intention was to provide descriptions of reasonable accuracy over a wide range of 
interesting flows rather than to concentrate on precise details for a single flow. 
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FIQURE 1.  The experimental apparatus. All dimensions in mm. 
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The dimensions of the water bath are as indicated in figure 1. When it is desired 
to first cool and then heat the water flowing up the tube, the water bath is positioned 
so that the short section (C) is placed below the long section (B) and T, is chosen to 
be less than both TA and TB. However, if it is desired to first heat the water in the 
tube, the bath may be positioned either with the short section (C) below the long 
section (B), with the temperatures being maintained so that TA < T, and TB < T,, or 
with (B) below (C) with the temperatures being maintained so that TA < TB and 
T, < TB. The reason for having both heating and cooling sections in the water bath 
is to restrict any recirculation regions formed in the first section of the bath, thus 
assisting the experimental flows to remain stable. The shorter section is used for 
cooling when the water is first cooled because it is difficult to maintain a steady flow 
when the recirculation region adjacent to the duct wall becomes too large. The water 
streams being pumped up the vertical tube and into the two water baths are 
maintained at constant temperatures by storing prior to pumping in tanks which are 
held at specified temperatures. The temperature TA is very close to the temperature 
of the room so that little or no heat transfer can take place until the water enters the 
section of the tube encased by the water bath. The straight length of tube, preceding 
the heat transfer region, is long enough so that fully developed flow can be set up 
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before the fluid velocity is affected by the heat transfer region. Beyond the region 
encased by the water bath there is a long length of straight vertical pipe where the 
fluid velocity is able to return to that of fully developed flow. The average velocities 
for each individual situation were found by using a flow meter which was situated in 
the section of the pipe preceding the heat transfer region. Colour photographs are 
presented from these experimental investigations from which a certain amount of 
information regarding the streamlines and temperature distributions within the 
water can be deduced. The streamlines were revealed by adding aluminium powder 
to the water in the tube and the temperature distribution within the fluid can be seen 
because encapsulated liquid crystals are dispersed in the water which change colour 
from red through yellow and blue to purple over a temperature range of 
approximately 22.0-27.0 "C. These substances are sufficiently small (2-50 pm) and in 
low concentrations so as not to change any of the physical properties of the water. 
Photographs are presented from several investigations and comparisons are made as 
the governing parameters Re, Gr/Re and Om (see $ 3  for definitions) are allowed to 
vary. 

3. General numerical theory 
Steady laminar combined convection of a fluid with velocity (w, u) inside a vertical 

circular tube of radius a as illustrated in figure 2 is the situation under consideration. 
In  the model an entry section between z = O  and z =  b is employed where the 
temperature of the wall for 0 < z < b is held constant a t  T = T,. The value of b is 
chosen so that the boundary condition a t  z = 0 is a good approximation to z = - co 
where fully developed parabolic flow, (0, a,), at constant temperature is assumed. A 
heated/cooled section is situated between z = b and z = c where the temperature of 
the tube wall is maintained at T = Th and beyond z = c the temperature of the wall 
is reduced/increased to T, which is the temperature that the fluid attains as z tends 
to infinity. It should be noted a t  this point that in the mathematical model the region 
beyond the second section of the water bath is being treated as if that part of the 
bath extends to infinity. This is a fair assumption to make for both configurations of 
the water bath for the following reasons. In  the situation where the large section of 
the bath is uppermost it is reasonable to assume that most of the heat transfer takes 
place inside the length of the tube encased by the water bath, and in the situation 
where the small section is uppermost the fluid is heated in the large section of the 
water bath and cooled in the small section to a temperature which is very similar to 
the room temperature. No changes occur in the azimuthal direction so the solution 
domain can be reduced to 0 < r < a, 0 < z < co where a is the radius of the tube and 
the condition a/& = 0 applies along r = 0. The acceleration due to gravity, g ,  acts 
vertically downwards in the opposite direction to the forced convection. The fluid is 
considered to be Newtonian with constant dynamic viscosity, thermal conductivity, 
specific heat capacity and coefficient of expansion. Density variations are assumed to 
be negligible except in the buoyancy term of the vertical momentum equation 
(Boussinesq approximation). Gray & Giorgini (1976) have questioned the validity of 
the Boussinesq approximation when solving a related problem involving BBnard 
convection. They conclude that for BBnard convection the Boussinesq approximation 
is valid for water at the ambient temperature 1 5 O C  when typical temperature 
differences are < 1.25OC. In this investigation it has been assumed that the 
Boussinesq approximation is valid despite the fact that temperature differences up 
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FIGURE 2. Illustration of the convection system under consideration. 

to 3.7 "C exist. The flow situation is vastly different to that investigated by Gray & 
Giorgini and, since the agreement found between the numerical and experimental 
investigations is good, it has been assumed that it is reasonable to use the Boussinesq 
approximation here. However, if more detailed comparisons are to be made, then 
temperature variations in all physical properties would clearly improve the numerical 
model. The above assumptions are made in order to keep the model as simple as 
possible, although inclusion of variations in some of the physical parameters should 
not in theory be difficult to introduce into the following numerical theory. Viscous 
dissipation is ignored in the energy equation as it was shown to have only a small 
effect by Collins (1975). 

The governing equations are the continuity, axial momentum, radial momentum 
and energy equations and these can be written in the form (Morton et al. 1987) 
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and p the pressure of the fluid. The boundary conditions for the problem are as 

( 5 )  
follows : aT au - -0 ,  - = o .  a t r = 0 ,  O < z < c o :  v = O ,  - 

ar ar ’ 

a t r = a ,  O < Z < C Q :  v = O ,  u=O, 

O < x < b :  T=T,, 

b < z < c :  T = T h ,  

C < Z < O O :  T=T,; J 
a tz=O,  O < r < a :  v = O ,  u=u,, T = T , ;  (7) 

asz+co, O < r < a :  v = O ,  u=u,, T=T,. (8) 

The velocities u, = u, correspond to parabolic velocity profiles. 
The Boussinesq approximation involves replacing p by po[ 1 - /3( T - T,)] in the 

buoyancy term of (2) and by po elsewhere. Here /3 = (-  l / p )  (ap/aT) is the coefficient 
of expansion with respect to T ,  and po is the density at T = T,. The non-dimensional 
variables V, U,  R, Z ,  P and 0 are defined as follows: 

1 (9) 
v=urnV, u=u,U, r = a R ,  z = a R e Z ,  

p = g p O z [ / 3 ( T h - T , ) - 1 1 + p O u ~ p ,  T =  Th+(T,-Th)e>j 

where urn is a characteristic velocity taken in this study to be the mean velocity and 
Re = au,/v is the Reynolds number. Now introduce a stream function, $, which 
satisfies the continuity equation ( 1 )  : 

and define the vorticity as follows : 
1 av au a = ---- 

Re aZ 2R’ 
Combining (10) and ( 1  1) leads to 

and if P is eliminated between ( 2 )  and (3), (2)-(4) become 

where Pr = v/a is the Prandtl number, and Gr = g/3(T, -  Th) a3/v2 is the Grashof 
number. The boundary conditions (5)-(8) become 

(15) 
ae 

a tR=O,  O < Z < c o :  $ = 0 . 5 ,  Q = O ,  - = O ;  
aR 



Recirculating pipe flows 449 

atR = 1. O<Z<0O: $ = O ,  - = o  :; 
0 < Z < b/aRe: 0 = 1, 

b/aRe < Z < c/aRe: f3 = 0, 

c / a R e < Z < c o :  0=8,; 

a t Z = O ,  O s R s 1 :  $ = g ( l - R 2 ) 2 ,  a = U ,  8 = 1 ;  (17) 

asZ-to0, O < R < l :  $ = + ( l - R 2 ) 2 ,  sZ=4R, 8=8,; (18) 

where 0, = (F,-Fh)/(Q--Th). 
The elliptic equations (12)-(14) give the desired description of the flow under 

consideration and these must be solved subject to the boundary conditions (15)-( 18). 
Such a solution is obtained by expressing the governing equations in finite-difference 
form and solving them iteratively on a given fine grid with the aid of corrections from 
coarser grids which accelerate the rate of convergence of a relaxation scheme on the 
finest grid by efficiently smoothing error components (multigrade methods). 

In order to satisfy boundary condition (18) a scaling is used in the axial direction. 
This scaling is applied only over the region d < Z < 00 where Z = d is a station in the 
range 6-13 pipe diameters downstream of Z = 0, depending upon the magnitude of 
Re. The scaling of the axial coordinate, as used by Morton et al. (1987), is defined as 
follows : 

where 6 is a new axial variable which lies in the range 0 < g < 1 and C is a 
transformation parameter to be defined later. Equations (12)-(  14) under this 

[ =  1 - l / ( l + C ( Z - d ) )  or Z =  ( E / C ) / ( l - ( ) + d ,  (19) 

a 2 s Z  iaa a Grae  +-+ ---_--- ( 2 1 )  
aR2 RaR R2 ReaR' 

(22 )  1 = Pr ---- 1 { Re2 1 F2e(dg)2 at2 dZ +--+-+-- a m g ]  agdZ2 8R2 a2e RaR 1 ae} ' 

The solution domain of the problem can now be split into two regions, namely 
0 < Z < d where (12)-(17) are expressed in finite-difference form on a fine regular 
rectangular grid, Gz, of N +  1 points in the radial direction and Mv+ 1 points in the 
axial direction, and d < 2 < 00 where (20)-(22), (15), (16) and (18) are expressed in 
finite-difference form on a fine regular rectangular grid, GE, of N +  1 points in the 
radial direction and Nc+ 1 points in the g-direction. The value of the parameter C is 
chosen so that the step size between the axial locations ZNN+$ and Z,,,, = d on Gt 
is the same as the distance between axial locations Z N N + ,  and Z,, on the fine grid 
Gz (the subscript Mv refers to values a t  the Mvth axial location). Thus if f N N + ? :  = 
1/M = 1 - 1 / ( l + C ( Z N N + 2 - d ) )  and Z,,+,-Z,,+, = K where K = d/"V it must 
hold that 

and hence for Z > d ,  

c = l / ( ( N f -  1 ) K )  (23) 

z = ( [ ( M - l ) K ) / ( l - - g ) + d .  (24) 
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Central differences are employed in the radial direction for both first and second 
derivatives; however, attempts to do the same in the axial direction produce 
oscillations in the solution. These oscillations arise from the large internal gradients 
in temperature and velocity; they are absent if GrlRe is sufficiently small (this would 
be expected since on the finest mesh the cell Reynolds number in the radial direction 
is < 0.5 and in the axial direction is < 1.5 for all of the values of Re considered here 
and central differencing is normally expected to be stable for cell Reynolds numbers 
up to about 2). The oscillations are overcome by using either backward or forward 
differencing (first order) in the axial first-derivative terms, depending upon whether 
the flow a t  a particular point is in the positive or negative Z-direction, respectively. 
As Re increases or the flow field becomes more complicated it may be appropriate to 
use higher-order axial differencing and/or discretization (i.e. adaptive meshing) in 
the vicinity of the temperature discontinuities. However, for the parameter ranges 
considered in this paper the relatively small absolute and cell Reynolds numbers 
involved suggest that any inaccuracies arising from the present formulation will 
themselves be small. 

The vorticity on the boundary is determined to second-order accuracy using 
Taylor series expansions of 52 and 8 at R = 1, the fact that a@/aR = 0 a t  R = 1,  and 
(12) and (20) evaluated at R = 1 .  The temperature a t  the centreline is given to 
second-order accuracy using a8/i?R = 0 at R = 0 and (14) and (22) evaluated a t  
R = 0. The finite-difference equations, given in full by Keen (1988), are solved using 
multigrid techniques and details of the particular scheme used here are given in the 
Appendix. 

Convergence to the exact solution is assumed to have occurred when the average 
change in the finite-difference variables between consecutive iterations on the finest 
grid has fallen below lo-'. When the solution procedure is initiated the values given 
to  the finite-difference variables $i,,  and Q,,, (at point (i ,j)  on the relevant finite- 
difference grid) correspond to a parabolic velocity profile everywhere, and the values 
of 8i, j  are put equal to j. If converged solutions already exist and the governing 
parameters are changed by small amounts then convergence of the new solution may 
often be achieved more quickly by using this old solution as an initial guess for the 
new calculation. The values of N and Mv are usually taken to be 64 and 256, 
respectively, with Ns equal to 256. Calculations with N = 32, Mv = 128 and I@ = 128 
suggest that the combined 64 x 512 grid is fine enough to give an accurate solution 
and calculations with N = 96, Mv = 256 and @ = 256 (which is the finest grid 
possible owing to storage limitations on the computer (Amdahl 5860)) suggest that 
the results presented here for the stream function are correct to within 1 x at 
every point on the two fine grids Gz and GS and colour plots of the temperature 
distributions for the two  finest grids were found to be almost indistinguishable. 

In all of the situations considered, the multigrid procedure is seen to speed up the 
convergence of the solution of the finite-difference equations, and for one typical 
situation, which was run to convergence on a single grid, the single grid solution took 
over seven times longer to converge than a multigrid solution using six grids. For 
more straightforward problems the multigrid techniques employed here would be 
expected to improve solution times by a factor of O( lo2). However, the temperature 
singularities encountered in the present study reduce this rate by an order of 
magnitude. In a related problem with no singularity significantly faster solution 
times were achieved. 
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4. Results and comparisons with experiments 
Before the more complex flows which provide the basis for this paper are discussed, 

the original asymptotic solution of an incompressible but thermally responsive fluid 
under an upward dynamic pressure gradient in a uniformly heated pipe is described. 
In steady equilibrium flow, if it is assumed that the temperature of both the fluid and 
inner pipe wall increase linearly with height across the entire fluid section, it may be 
shown (Morton 1960) that the axial coordinate 2 then disappears from the equations, 
leaving a uniform pressure gradient and a buoyancy force which may be taken as 
proportional to the local departure of temperature (and hence density) from the 
section mean. Both pressure gradient and buoyancy are independent of axial height 
2, and the pressure gradient is uniform across sections. It follows that buoyancy acts 
downwards against the pressure gradient over the inner part of the pipe section in 
which temperatures are less than the section mean and upwards with the pressure 
gradient over the remaining outer annulus. For small values of Re and Gr the 
resulting upward velocity profile is retarded near the axis and broadened towards the 
walls relative to Poisseuille flow ; for somewhat larger values of Re and Gr the upflow 
can be very significantly reduced near the axis with peak axial flow near the walls 
and a large increase in pipe impedance ; and for larger values of Re and Gr there will 
be a core of downward flow, where negative buoyancy exceeds positive pressure 
gradient, surrounded by an annulus of upflow near the walls particularly where 
buoyancy and pressure gradient reinforce. The precise dependence of upward 
velocity on Re and Gr is complicated, with U K Re Grv(Gr), but the essential features 
of this preliminary discussion are that the pipe flow responds to the local balance 
between pressure gradient, buoyancy and viscous forces, and that for quite modest 
heating these forces are of comparable order. 

With the laboratory apparatus described in 92, four configurations are possible 
with cooling followed by heating or heating followed by cooling as the working fluid 
rises in the vertical tube and with the shorter bath either below or above the longer. 
Only three of these cases are considered here since flow instability was observed when 
cooling over the long bath was followed by heating over the short one a t  much lower 
values of Re and Gr than in the other three cases. The three other cases are discussed 
below. 

In each case it should be kept in mind that in the laboratory experiment T,  is taken 
as the temperature of the water in the main reservoir and hence of the water entering 
the working section a t  the bottom of the lower water bath, Th is taken as the 
temperature of the lower water bath, T, as that of the upper water bath, and no 
special account is taken of temperatures in the vertical tube above the top of the 
upper water bath. Heat may be lostlgained from this upper section of the pipe 
surface, although more slowly than in a temperature-controlled bath, and this 
cooling/heating must be assumed to have some influence on flow at lower levels. In  
contrast, in the numerical simulation the working fluid a t  z = 0 and the wall in 
0 < z < b is at temperature T,, the wall temperature in b < z < c is at  temperature 
Th, and the wall temperature above z = c is maintained a t  T, without any upper 
region of cooling/heating. The two problems are very close, but there may be 
some minor influences from cooling/heating of the upper pipe in the laboratory 
experiment that are absent from the numerical simulation. 
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urn T, Tb T, Re Gr 8, 
(a)  1.07 x 23.4 23.0 26.3 15.1 2442 8.25 
( b )  1 . 8 2 ~  23.6 23.1 26.2 25.7 3053 6.20 
(c) 2 . 2 4 ~  lo-' 23.6 23.1 26.4 31.7 3053 6.60 
(a )  1 . 0 7 ~  23.8 23.1 26.6 15.1 4273 5.00 
( b )  1.82 x 23.8 23.1 26.7 25.7 4273 5.14 
(c) 2 . 2 4 ~  23.7 23.1 26.6 31.7 3663 5.83 

TABLE 1.  Flow data for case (I) 

4.1. Case ( I )  : Cooling over the short section followed by heating 
over the long section 

For this case the lower bath of length 2.2 x lop2 m is cooled in each situation by 
somewhat less than 1 "C below ambient (T,) and the longer upper bath is warmed by 
approximately 3 "C above ambient. The parameters v, p and Pr are given their values 
a t  24 "C, these being 0.92 x m2/s, 2.4 x lop4 "Cpl and 6.3, respectively, as given 
by Raznjevic (1976). Six situations are considered and the temperature ("C), 
velocities (m/s) and governing non-dimensional parameters for these flows are 
displayed in table 1. In  figures 3(a ) ,  3(b)  and 3(c) (Plate l),  the first three flows in 
table 1 are displayed in terms of stream function contours from the numerical model, 
a colour photograph from the experiment and a colour-coded temperature diagram 
from the numerical model, respectively. The stream-function contours are for $ in 
theset{-0.14, -0.12, -0.1, ..., -0.02,0,0.05,0.1,0.15, ..., 0.4,0.45,0.5,0.505,0.51, 
0.515, . . . , 0.535, 0.54) where $ = 0 is the streamline along R = I and $ = 0.5 is the 
streamline along R = 0. The colour coding illustrated was derived from stationary 
photographs taken over the indicated range of temperatures and is the same for the 
three colour diagrams. The intention for these three runs was to keep Gr constant and 
vary Re over the somewhat limited range available. It was not easy to predetermine 
Gr and the value for figure 3 (a )  came out rather low, although in this case it might be 
argued that the appropriate Gr should depend upon T, - Th and hence vary as em Gr. 
The streamline plots reproduce the shapes of the recirculation regions surprisingly 
well in view of the complexity of the flow. However, the recirculation at the centre 
of the tube starts a little sooner in the simulation than the experiment for the two 
larger values of Re in figures 3 ( b )  and 3 ( c ) .  It is hard to be certain of the cause of this 
relatively small difference, but i t  is possibly due to  the differences in treatment of 
wall temperatures above the second water bath. 

The flow and temperature fields are broadly similar in the three cases. The 
ascending fluid is cooled near the tube wall as it passes through the first bath where 
buoyancy acts downwards near the wall and upwards near the axis. Flow then enters 
the heated bath section and a boundary layer of warm fluid grows, with acceleration 
near the wall, progressive deceleration in a central area and outward radial 
acceleration of fluid from the axis. I n  this particular range the flow stagnates on the 
axis, with the formation of a slowly recirculating core above the stagnation point 
surrounded by a relatively fast, thin, annular upflow corresponding with the thermal 
boundary layer. If the simulation were continued sufficiently far upwards, the flow 
would ultimately reach uniform temperature T, and a parabolic velicity profile some 
distance above a second axial stagnation point closing the central region of 
recirculation. Figure 3 (a )  shows the best correspondence between streamlines in the 
simulation and experiment, but the simulation shows a very weak second 
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FIGURE 3. Contour plots of stream function, colour photographs from the experiment and colour coded 
temperature diagrams for the first three flow situations in table 1 .  

INGHAM ET AL (Facing p. 452) 
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FIGURE 5.  Contour plots of stream function, colour photographs from the experiment and colour coded 
temperature diagrams for the second three flow situations in table 1 .  

INGHAM ET AL 
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FIGURE 7. Contour plots of stream function, colour photographs from the experiment and colour coded 
temperature diagrams for the three flow situations in table 2. 

INGHAM ET AL. 
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FIGURE 9. Contour plots of stream function, colour photographs from the experiment and colour coded 
temperature diagrams for the three flow situations in table 3. 

INCHAM ET AL. 
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recirculating core with axial upflow probably caused because diffusion plays a 
dominant role in the very slow flow near the primary stagnation point. The warmest 
fluid below this stagnation point is near the axis, whereas above the stagnation point 
the slowly recirculating fluid in the inner core is a t  relatively uniform temperature. 
This creates the possibility of establishing a very weak inner recirculation by 
conduction of heat past the stagnation point. The inner recirculation is too weak to 
see in the streamlines in the experimental photograph in figure 3(a). 

Although the colours in the temperature diagrams are rather more bold than in the 
photographs, the numerical simulation of the temperature distributions can be seen 
to be very good in each of figures 3(a), 3(b) and 3(c).  

The flow average temperature, local Nusselt number, average Nusselt number, and 
Reynolds number 
et al. 1987): 

times friction factor, respectively, are defined as follows (Morton 

1 rz 
1 

NU,, = J NudZ, '- b / a  Re blaRe 

where NU,, is calculated between the axial locations blARe and Z. Plots of Tm, Nu, 
NU,, and Ref are displayed in figures 4(a) ,  4 ( b ) ,  4(c) and 4 ( d ) ,  respectively, for the 
three flows considered in figure 3. The flow average temperature is seen to drop very 
little over the first region of the water bath. However, the greater penetration of the 
wall temperature in the second water bath for the case with Re = 15.1, which is 
apparent from figure 3(a ) ,  is seen to cause a very much more rapid rise in T, over 
that part of the tube. From figures 4(b)  and 4(c), a lower Reynolds number is seen 
to produce more dramatic rises and falls in the Nusselt numbers, implying more 
efficient heat transfer a t  low Re, as would be expected. Dramatic rises and falls are 
also present in the plots of Ref for lower Re, and this is also expected owing to the 
larger recirculation regions which are apparent from figure 3. 

The final three situations to be considered from table 1 are presented in figures 
5 (a) ,  5 ( b )  and 5 ( c )  (Plate 2), respectively. Streamlines are plotted for the same values 
of as in figure 3. In this group the third situation has a low value of Gr but the three 
cases have almost equal values for 8, Gr. Again the axial stagnation point is higher 
for experiment than simulation for the two larger Reynolds numbers in figures 5 ( b )  
and 5(c). The disparity is greater than in figures 3(b) and 3(c) and the fact that 
stagnation occurs higher in the upper bath supports the view that its cause may be 
in the difference between experiment and simulation above the upper bath. The 
recirculation region at  the centre of the pipe for the flow in figure 5 ( a )  is predicted 
well and the experimental evidence for the existence of the secondary recirculation 
at  the centre of the pipe is even stronger in this case than for the flow in figure 3 (a).  
The shape of the primary recirculation can be seen near its beginning (although it is 
clearer on an enlarged photograph) and this corresponds closely to the predicted 
streamlines, supporting the existence of the secondary recirculation. The colour 
coding for the temperature diagrams is the same as in figure 3. The agreement 
between the predicted and observed colours is again good, although the red and 
yellow regions are not quite as well defined in the photographs as in figure 3. In 
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urn Te T, T, Re Gr 0, 
(a )  1 . 5 8 ~  22.0 25.7 22.4 22.3 -22589 0.892 
(b )  1 . 2 8 ~  22.2 25.7 22.4 18.1 -21368 0.943 
(c) 1 . 2 4 ~  22.5 25.7 22.5 17.5 -19536 1.000 

TABLE 2. Flow data for case (11) 

figures 6 ( a ) ,  6 ( b ) ,  6 ( c ) ,  and 6 ( d ) ,  T,, Nu, Nu,, and R e f ,  are displayed, respectively, 
for the three flows considered in figure 5.  The conclusions to be drawn from figure 6 
are similar to those drawn from figure 4 .  

4 .2 .  Case (11) : Heating over the short section followed by cooling 
over the long section 

The bath configuration is as in case (I) but the order of heating and cooling is 
reversed ; the values of the parameters v, p and Pr are unchanged. Three situations 
are considered and the temperatures, velocities and governing non-dimensional 
parameters for these flows are displayed in table 2. 

The three situations considered are presented in figures 7 (a) ,  7 ( b )  and 7 ( c )  (Plate 
3) ,  respectively. Streamlines are plotted for the same values of 9 as were used in 
figure 3. The temperature coding is different from that used in figures 3 and 5 but it 
was still derived from a set of stationary photographs taken over the indicated range 
of temperatures. The entry temperature is now varied while the other temperatures 
are kept approximately constant. Heating in the short bath produces axial 
stagnation for this range of parameters with acceleration of the working fluid radially 
outwards into a thin annular upflow near the tube wall. Subsequent cooling in the 
upper bath generates downward buoyancy near the walls and upward buoyancy 
reinforcing the pressure gradient near the axis. The thickness of the cool boundary 
layer in the upper bath depends on the balance between heat conduction (and hence 
momentum diffusion a t  fixed Prandtl number) and advection; a t  the lowest Re 
reverse flow a t  the wall penetrates deeply and the axial recirculation is cut off 
abruptly, while for increasing values of Re the flow reversal retreats progressively 
further up the wall and the axial recirculation bubble lengthens. The streamlines 
predicted by the numerical model are seen to correspond fairly closely to the 
observed streamlines from the photographs. The shape and size of the recirculation 
region a t  the centre of the tube is predicted quite well in each case, and the length 
of this region can be seen to decrease as the Reynolds number decreases and the entry 
temperature increases. Predicting the point of flow separation from the wall in the 
second and third flow situations is one of the more stringent tests of the numerical 
model. It can be seen from figures 7 ( b )  and 7 ( c )  that  there is reasonably good 
agreement. However, the recirculation regions associated with these flow separations 
are seen in the experiments to have a less significant effect on the shortening of the 
recirculation region a t  the centre of the tube than is predicted by the mathematical 
model. In this set of experiments the colours in the photographs vary less than in the 
two earlier investigations and the main points of interest are the green streaks 
downstream of the first water bath in figure 7 ( c ) ,  which are predicted fairly well by 
the numerical model. Elsewhere there is little change of colour. 

In figures 8 ( a ) ,  8 ( b ) ,  8 ( c )  and 8(d ) ,  T,, Nu, Nu,, and Ref, respectively, are plotted 
for the three flows considered in figure 7 .  Note from figure 8 ( a )  that the different 
values of Th - T, resulting from the different entry temperatures produce differences 
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uln T, T h  T, Re Gr em 

(a) 1.43 x 22.5 24.9 23.1 20.2 -14652 0.750 
( b )  1.43 x 22.6 24.4 23.1 20.2 -10989 0.722 
(c) 1.43 x 22.6 24.0 23.1 20.2 -8547 0.643 

TABLE 3. Flow data for case (111) 

in T, that survive over the whole of the region covered by the water baths in the 
experimental investigation. From figures 8 (b)  and 8 (c ) ,  the Nusselt numbers are seen 
to be almost the same up to the divide in the water bath; however, from that point 
onwards, the recirculation regions adjacent to the wall of tube and the slow rate at  
which T, is attained in the second and third flows cause the corresponding Nusselt 
numbers to be very small. The Reynolds number times the friction factor is also seen 
to be most affected over the second section of the water bath from figure 8 ( d ) .  This 
is due to the large recirculation regions present in the second and, in particular, the 
third of the flows under consideration. 

4.3. Case (111) : Heating over the long section followed by cooling 
over the short section 

For this ca0e the lower bath of length 8.5 x lop2 m is heated in each situation to 
approximately 2 "C above ambient and the shorter upper bath is cooled back to 
about 0.5 "C above ambient. The values of v, p and Pr are the same as for cases (I) 
and (11). Three situations are considered and the temperatures, velocities and 
governing non-dimensional parameters for these flows are displayed in table 3. 

As in cases (I)  and (11), the region beyond the second section of the water bath is 
treated as if that part of the bath extends to infinity in the mathematical model. This 
is a better assumption in this case because the fluid is cooled by the small bath to a 
temperature which is not far above room temperature. 

In these cases Re is held constant and 8, Cr is altered by changing the value of Th. 
The three situations described in table 3 are presented in figures 9 ( a ) ,  9 ( b )  and Q ( c )  
(Plate 4), respectively. Streamlines are plotted for the same values off? as were used 
in figure 3. The recirculation regions at the centre of the tube are again predicted 
reasonably accurately, with the beginning of the recirculation being seen to move a 
little downstream as Boo Gr decreases in magnitude. For the larger value of 18, Grl the 
axial recirculation is restricted in length because a wall recirculation region forms 
downstream after the pipe enters the short cooling bath. Closure of the axial 
recirculation within the cooling bath occurs outside the region illustrated in figure 9, 
although there is perhaps evidence in figure 9 (a)  of a slight broadening of the annular 
wall flow. The temperature diagrams, which are colour coded in the same way as in 
figure 7,  are seen to have more variation in colour than those in figure 7 .  The thermal 
boundary layers adjacent to the pipe wall are clearly visible and the core 
temperatures appear to be predicted relatively well with, in particular, the light 
green area at the centre of the tube near the end of the longer bath being clearly 
observed in the photograph in figure 9 (a) .  In  figures 10 (a) ,  10 (b) ,  10 (c )  and lO(d ) ,  T,, 
Nu, Nu,, and Ref, respectively, are displayed for the three flows considered in figure 
9. The value of Th can be seen to be a dominant factor in the value of T, downstream 
of the first water bath. This produces phenomena similar to  those observed in figure 
8 downstream of the heated section. The difference in figure 10 is that variations 
occur also over the longer first section of the water bath. The trends are as would be 
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expected with the most extreme variations of Nu, Nu,, and R e f  occurring for the 
larger value of lOo0 Grl . 

5. Conclusions 
A striking new series of axisymmetric mixed-convection flows have been 

demonstrated in which interior stagnation and flow recirculation were produced 
within pressure-gradient-forced flow up a vertical pipe with heated and cooled wall 
sections. These investigations yield considerable insight into flows in which two 
competing systems of interior force combine to produce with viscosity a rich and 
varied set of flow patterns. The flows are of both theoretical and practical interest. 

The investigation was by both numerical simulation and laboratory experiment 
and the two approaches gave results that are in excellent general agreement. 

The laboratory experiments used aluminium powder to visualize the streamlines 
in steady flow, and suspensions of temperature-sensitive liquid crystal particles to 
give a general indication of the temperature fields. Photographs are presented for 
several flow configurations. 

The numerical study involved the solution of finite-difference equations derived 
from the governing system of elliptic differential equations using multigrid 
techniques. In  spite of the fact that there are temperature singularities in the 
boundary conditions, the multigrid solutions were up to seven times faster than 
single-grid solution routines. For some flows, interesting features which are not 
apparent from the experimental photographs were revealed by the numerical results. 

Possible improvements on the numerical side of the investigation could be 
achieved by the use of higher-order finite-difference equations or higher-order 
interpolation routines, and also the accuracy of the solutions could be improved in 
areas of rapid change by the use of adaptive meshing techniques. 

We should like to acknowledge the invaluable contribution of Mr Terry Long, of 
the Monash Geophysical Fluid Dynamics Laboratory, to the experimental side of 
this work. D. J. Keen thanks the SERC for providing a research studentship for the 
duration of his studies. 

Appendix 
A.l. Multigrid theory 

The general theory of multigrid techniques and the FAS (Full Approximation 
Storage) method is covered comprehensively by Brandt ( 1977). The following, which 
is similar to the particular approaches of Falle & Wilson (1988) and Gaskell et al. 
(1988), is a summary of the approach adopted for this particular problem. 

Consider the systems LU = F and AU = Q, on the domain l2 and its boundary XI, 
respectively, where U is a variable on SZ and alR, L and A are differential operators 
and F and Q, are source terms. These systems can be discretized on a grid Gk,  
approximating 52, as follows : 

LkUk = F k ,  (A 1 )  

A"u" = @, (A 2) 

where Lk and Ak are difference operators and CJk ,  Fk and Gk are the discrete 
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approximations to U, F and Q, on Gk.  Now if uk is an approximation to Uk (think of 
Uk as being converged and uk as being unconverged from now on) then 

Lkuk = Fk--fk, (A 3) 

Akuk Qk - $k> (A 4) 
where fk and $k are the residuals, or the amounts by which uk fails to satisfy (A 1 )  
and (A 2), respectively. From now on a capital U is used to refer to a converged finite- 
difference solution and a small u is used to refer to an unconverged finite-difference 
solution. Now suppose there exist two grids Gh and GH with mesh sizes h and H such 
that H = 2h. One way to  obtain a good approximation, uh, on the finer grid, Gb, is 
first to  obtain a solution, U H ,  on the coarser grid, C H ;  LHUH = F H ,  and then 
interpolate to the fine grid: 

where I; represents a prolongation from GH to Gh. This idea can be extended to 
obtain the GH solution from even coarser grids ; however, this theory does not exploit 
the proximity of GH to Gh. Using multigrids, not only can a first guess to uh be 
generated using G H ,  but improvements to uh can also be achieved. In  order to 
improve uh the error function Vh must be used, where 

U h  = I ;  U H ,  (A 5 )  

Vh = U h - U h .  (A 6) 

If Uh is not smooth on scales of order-h then, for arbitrary uh, Vh will not be smooth. 
However, after a few relaxation sweeps on Gh the high-frequency error components 
of Vh will be destroyed. At this point convergence slows down and coarser grids must 
be used. Assuming a coarser grid, G H ,  has been used, Vh can be approximated by V H  

(A 7)  
as follows: 

and then uh can be updated: 

(A 8) 

LJhvh = y h ,  (A 9) 

Vh = I; V H  

(uh)new = (uh)'ld+Ik V H .  

The residual equations satisfied by Vh when L is nonlinear are as follows: 

where LhVh = Lh(uh + V h )  - Lh(uh) and rh = Fh - Lh(uh). Similar equations exist on 
the boundary, but for convenience they will be ignored from now on since they are 
of the same form as the interior equations. 

A.2. The FAS method 

The problem is solved using a scheme known as the full approximation storage (FAS) 
method. This is carried out as follows; approximate equation ( A 9 )  on GH as 
follows : 

where If represents a contraction from Gh to G H .  Now introduce the new variables 

LH(I fuh+ V H ) - L H ( I f u h )  = I f r h ,  

u; = I,HUh+ V H .  

(A 10) 

(A 11) 

These new variables represent, on the coarse grid, the sum of the basic 
approximation, which can be thought of as being fixed, plus its correction V H .  
Equation (A 10) now becomes 

LHu,H = Ff  = LH(I,Huh)+Ifrh. (A 12) 
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Equation (A 12) has the advantage that i t  resembles the original equation (A 9) 
except for a different right-hand side, so the same relaxation routine can be used on 
all levels. The approximation uh on Gh is corrected by solving (A 12) (or 
approximately solving it), and interpolating VH onto Gh, updating uh as indicated in 
(A 8). 

When convergence is achieved uh = Uh and Vh = 0 so that 

uf = I f  Uh, (A 13) 

i.e. u: is a coarse grid function which coincides with the projection of the fine grid 
solution. The above theory can be extended to  three or more grids. 

A.3. The solution algorithm 
The above theory is applied to  the duct problem in the following manner. Suppose 
an unconverged solution uM exists on G M ,  the finest grid, with the coarser grids being 
represented by Go, G I , .  . ., GM-l ,  and the grid size ratio of Gk+’ to  Gk being equal to t. 
Here u represents each of the variables y?, 52 and 0. Proceed as follows: 

(i) Interpolate uM and rM to each of the coarser grids. The correction equations are 
determined from (A 12) to  be 

L”uk = F k ,  (A 14) 
where 

j 7 k  = Lk(Ii+l ~ k f l )  +I~+,(F”+’ - L”+’ u“+’), k + M ;  P M  = FM ; uk = I& uM 

plus the boundary conditions. 
(ii) On each grid start with uk as an initial state and perform one iteration. 
(iii) Start iterating on the grid that is most efficient at converging the solution. 

This is the grid on which the quantity 

II{UkY+l - { U k Y  II (A 15) 

is largest. Here n + 1 and n refer to two consecutive iterations and 1 1  * 11 is the %norm. 
The quantity (A 15) is generally, though not always, largest on the coarsest grid. 

(iv) Assuming that (A 15) is largest on Gk, iterations are carried out using (A 14) 
on Gk until convergence slows down or the residual has decreased by a predetermined 
amount. 

(v) The correction, which is given by 

(A 16) v k  = (Uk)new - (Uk)o ld ,  

is interpolated to the next finite-difference grid, G”’, where uk+l is updated according 
to (A 8). 

(vi) Iterate on Gk+’ and then correct to G k f P ,  and so on to G M .  
(vii) Iterate on GM until convergence slows down (usually only a few iterations). 
Steps (i)-(vii) constitute one multigrid cycle. 
The approximation to the present problem, a t  any particular multigrid level, is 

obtained iteratively by sweeping across the grids GZ and GC from Z = 0 to 6 = 1,  
relaxing the relevant finite-difference equations, for each of the variables y?, 52 and 
0 in turn, a t  every point on the two grids during each sweep. The relaxation 
parameters used for each of the finite-difference variables y?, D and i3 are different, 
with 52 and 0 needing to be under relaxed, 52 more so than 0, and y? having a 
relaxation parameter of unity. It is also found that smaller relaxation parameters for 
52 and i3 are necessary as the grids become coarser, in order to avoid divergence on 
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these coarse grids. The relaxation parameters for 51 and 0 are dependent upon the size 
of Re, with smaller values being needed as Re becomes larger. 

A problem encountered on the coarser multigrid levels is the matching of the 
solution between the grids GZ and GC a t  Z = d. This is overcome by using a third 
relaxation routine, valid along Z = d (which is incorporated into each iterative sweep 
for the row of finite-difference points along Z = d) where the axial derivative terms 
are expressed in terms of the two axial steps either side of Z = d (these steps only 
being equal on the finest mesh). On GS care must be taken to determine the correct 
governing equations if each point on a coarse mesh is to correspond to a point on the 
next fine mesh. In order to illustrate this consider the penultimate fine mesh, GM-l. 
The expression 

is valid on GM-l, where * refers to values on G M - l .  Thus the following must hold: 

(* = 1-l/(l+C*(Z*-d)) (A 17) 

(A 18) '%N/2+2 = '/'fl = l-l/(l+C*(Z$N/z+z-d)). 

It must be true that Z$N/2+2 = Z N N + ,  and [$N,2+2 = ( N N + 3 ,  so (A 18) can be 
expressed as follows : 

Z N N + B  can be determined from (24), and substitution into (A 19) leads to a value for 
C* of 

which is identical to the value of C given by (23). The value of C can be shown to be 
the same on all coarse grids, hence the relaxation routines used on the coarse meshes 
for Z > d are exactly the same as those used on the fine mesh GS. 

is taken to be the 9-point restriction 
used by Ghia et al. (1982). That is, the value of a finite-difference variable a t  the point 
( i +  l ,j+ 1) on the coarse mesh, take for instance $, is given as follows: 

2/iG = 1-l/(1+C*(Z"+3-d)). (A 19) 

(A 20) c* = l/((iG- l )K) ,  

The fine to coarse interpolation function, 

( G + 1  $ ' + l ) i + l , j + l =  i E i 1 1 , 2 j + 1  + i[$tLlz, 2j+1+ $tG, 2j+2 + $tlij+l+ k E 1 , 2 j I  

+ i k [ ~ % 2 2 ,  2j+z + $E{'zj+2 + $ 2 z ,  sj + $t[ijI. (A 21) 

This interpolation is not as important as the coarse to fine interpolation given by I;+, 
because of the large gradients present at certain points in all of the flows considered. 
The linear form of IF1 used by Ghia et al. (1982) was found to be less suitable, for the 
flows considered here, than a third-order upwind scheme which uses a weighted 
average of the two coarse grid points either side of a new fine grid point and the next 
upwind point on the coarse grid. This can be represented as follows, for a forward 
flow in the axial direction: 

(G+l $%i+l,2f+l = $f+l,,+l> 

(Ii+l $k)z.i+1,2j+2 = 9$f+l,j+2 + W + l , j + l - Q $ f + l , j ~  (A 22) 

with similar expressions being valid for reverse flows and for interpolations in the 
radial direction. 
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